Acta Cryst. (1994). C50, 1523-1525

Rb₃Ti₂(TiO)(PO₄)₃P₂O₇: a New Non-Centrosymmetric Titanyl Phosphate

RUMEN DUHLEV[†]

Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, England

(Received 20 September 1993; accepted 21 January 1994)

Abstract

Rubidium titanium titanyl monophosphate diphosphate has been synthesized for the first time. The structure consists of corner-shared TiO₆ and PO₄ groups with Rb atoms occupying nine-, ten- and eleven-coordinate sites. The TiO₆ octahedra are highly distorted and two of them are linked through a shared O atom. Two of the PO₄ groups share an O atom, thus forming a diphosphate group P₂O₇, two of the O atoms of which are terminal (*i.e.* not bonded to a Ti atom). Taking these structural features into account, the chemical formula can be written as Rb₃Ti₂(TiO)(PO₄)₃P₂O₇.

Comment

Potassium titanyl phosphate (KTiOPO₄) has been of interest in the past decade because of its unique combination of non-linear optical and electro-optical properties (Stucky, Phillips & Gier, 1989). These properties depend on the lack of an inversion centre in the structure and strong deformation of the TiO₆ octahedra, shown by the presence of a very short Ti—O bond. The title compound is a result of our attempt to produce new noncentrosymmetric titanyl phosphates with strongly distorted TiO₆ octahedra.

 $Rb_3Ti_3P_5O_{20}$ was one of two crystal phases obtained at high temperature from Rb_2CO_3 , TiO_2 and $NH_4H_2PO_4$ in the molar ratio 2.25:1:3.3. They were mixed in a platinum crucible and heated to 1373 K, kept at that temperature for 10 h, then cooled slowly (5° h⁻¹) to 923 K and removed from the furnace. The resulting crystals were recovered from the solidified flux by dissolving it in boiling water. The powder pattern showed that the crystals were a mixture of $RbTi_2(PO_4)_3$ and a phase that was not in the powder pattern database (ICDD). During the course of X-ray analysis, this phase was identified as $Rb_3Ti_3P_5O_{20}$, a new compound which has not been reported before. The bond lengths and angles (Table 2) are within the expected range. The structure consists of a three-dimensional framework of corner-shared TiO₆ octahedra and PO₄ tetrahedra with Rb atoms located on the cage sites within the framework (Fig. 1). The six O atoms around any of the three crystallographically distinct Ti atoms form a distorted octahedron. The distortion is larger for the environments of Ti(1) and Ti(3), which form a

form a distorted octahedron. The distortion is larger for the environments of Ti(1) and Ti(3), which form a titanyl bridge via O(13), and this results in the formation of one very short [1.780 (6) and 1.831 (6) Å, respectively] and one very long [2.036 (6) and 2.015 (5) Å, respectively] Ti-O bond, causing a maximum difference between the Ti-O bond lengths in Ti(1)O₆ and Ti(3)O₆ of 0.26 and 0.18 Å, respectively. In terms of bond strengths (Brown & Altermatt, 1985), this means that the short bond is twice as strong as the long one [1.10 versus 0.55 v.u. in Ti(1)O6]. There are five crystallographically distinct P atoms, two of which [P(1) and P(5)] are linked via O(14). The formation of the diphosphate group is achieved at the expense of a strong distortion (in both angles and bond lengths) of the P(1)O₄ and P(5)O4 tetrahedra [very long P-O bonds to the bridging atom O(14)], and one of the four bonding O atoms becoming terminal. The P(1)—O(14)—P(5) bridge forms an angle of 135.7 (3)° and the P-O bond lengths are 1.471(9)-1.496(9)Å (terminal), 1.501(6)-1.554(9)Å (O also bonded to Ti) and 1.600(5)-1.613(5)Å (bridging). Considering the diphosphate and titanyl bridging in the structure, the chemical formula can be written as Rb₃Ti₂(TiO)(PO₄)₃P₂O₇. The three crystallographically distinct Rb atoms are bonded to nine, ten

Fig. 1. TiO₆ octahedra, PO₄ tetrahedra and Rb atoms (spheres) in the structure of Rb₃Ti₂(TiO)(PO₄)₃P₂O₇. The darker shading represents those polyhedra and spheres that are centred around y = 0.14-0.37, while the lighter shading is for y = 0.63-0.86.

[†] Present address: World Scientific Publishing Co. Ltd, 73 Lynton Mead, Totteridge, London N20 8DH, England.

and eleven O atoms, respectively, with Rb—O bond lengths between 2.763 (6) and 3.457 (8) Å. Bond– valence analysis shows consistency between bond–valence balance and the oxidation state of each atom, apart from the higher bond-strength sum around the Ti and a few O atoms.

The lack of a centre of symmetry as well as the strongly distorted TiO_6 octahedra, though to a lesser extent than in KTiOPO₄ (Thomas, Glazer & Watts, 1990), suggested that this compound may show significant second-harmonic generation (SHG) response. Our measurements based on the Kurtz test on a powder sample (Kurtz & Perry, 1968), however, showed an SHG signal which was lower than that of KDP (KH₂PO₄).

Mo $K\alpha$ radiation

Cell parameters from 36

 $\lambda = 0.71073 \text{ Å}$

Experimental

Rb₃Ti₂(TiO)(PO₄)₃P₂O₇

Crystal data

 $M_r = 874.90$

Orthorhombic

Ti(2)

0.35265 (5)

0.74730 (16)

0.44253 (14)

0.0057 (4)

T:(7)	0.44004 (0)	0.7672 (6)	0.00000 (10)	0.00(1.(7))
11(3)	0.44904 (8)	0.7573(5)	0.83300 (13)	0.0061 (7)
P(1)	0.27349 (12)	-0.1449 (5)	0.78672 (15)	0.0067 (10)
P(2)	0.49021 (11)	0.7445 (6)	0.59928 (14)	0.0055 (9)
P(3)	0.39710(7)	0.2444 (2)	0.44614 (18)	0.0058 (5)
P(4)	0.49817 (10)	0.2540 (6)	0.80260 (14)	0.0061 (9)
P(5)	0.22276 (12)	-0.1450(5)	0.59526 (16)	0.0072 (10)
O(1)	0.2723 (3)	0.0884 (15)	0.7922 (4)	0.011 (3)
O(2)	0.5393 (4)	0.5532 (15)	0.5756 (6)	0.011 (3)
Q(3)	0.4181 (3)	0.7376 (17)	0.5458 (3)	0.010(2)
O(4)	0.3482 (2)	0.0448 (6)	0.4434 (9)	0.010(2)
O(5)	0.3452 (2)	0.4357 (6)	0.4436 (9)	0.010(2)
O(6)	0.5540 (3)	0.7557 (5)	0.8609 (4)	0.009 (3)
O (7)	0.4406 (3)	0.2476 (5)	0.5332 (4)	0.010 (3)
O(8)	0.4506 (4)	0.0579 (14)	0.8274 (5)	0.008 (3)
O(9)	0.5163 (4)	0.2577 (18)	0.7035 (4)	0.015 (3)
O(10)	0.2221 (4)	0.0925 (14)	0.5910 (5)	0.014 (3)
O(11)	0.3454 (3)	0.7425 (16)	0.8108 (4)	0.010 (3)
O(12)	0.6481 (3)	0.2482 (18)	0.6067 (4)	0.014 (3)
O(13)	0.4290 (2)	0.7520 (7)	0.9544 (4)	0.009 (2)
O(14)	0.2653 (3)	-0.2253 (7)	0.6835 (3)	0.012 (3)
O(15)	0.2643 (3)	0.7414 (10)	0.5195 (3)	0.012(2)
O(16)	0.2872 (3)	0.7375 (10)	0.3363 (4)	0.011 (2)
O(17)	0.4716 (4)	0.7423 (18)	0.6997 (3)	0.014 (3)
O(18)	0.5357 (4)	0.9382 (15)	0.5757 (6)	0.013 (3)
O(19)	0.4494 (4)	0.4432 (14)	0.8273 (6)	0.009 (3)
O(20)	0.4328 (3)	0.7394 (16)	0.3614 (4)	0.013 (3)

Table 2. Bond lengths (Å) and angles (°)

O(19)—Ti(3)—O(17)

84.9 (4)

Pcal.	raflactions		ruore 2	Dona icingi	is (ii) unu ungics	
-10001(0)			$Ti(1)O_6$ octahedron			
a = 18.281(2) Å	$\theta = 17-22^{\circ}$		Ti(1)-O(13)*	1.780 (6)	O(13)—Ti(1)— $O(18)$	94.6 (3)
b = 6.2932 (7) A	$\mu = 11.03 \text{ mm}^-$	•1	Ti(1)—O(18)	1.926 (10)	O(13) - Ti(1) - O(2)	91.9 (3)
c = 14.773 (2) Å	Room temperati	ıre	Ti(1)—O(2)	1.957 (10)	O(13)— $Ti(1)$ — $O(12)$	89.9 (2)
$V = 1699.6(6) Å^3$	$0.34 \times 0.27 \times$	0.23 mm	Ti(1)—O(12)	1.971 (6)	O(13) - Ti(1) - O(7)	89.8 (2)
7 = 4		0.25 mm	Ti(1)—O(7)	1.974 (6)	O(13)—Ti(1)—O(9)	176.1 (4)
L = 4	Colourless		Ti(1)—O(9)	2.036 (6)	O(18) - Ti(1) - O(2)	171.2 (3)
$D_x = 3.42 \text{ Mg m}^{-3}$					O(18)—Ti(1)—O(12)	94.8 (4)
					O(18)—Ti(1)—O(7)	87.0 (3)
Data collection					O(18)—Ti(1)—O(9)	89.1 (4)
		a			O(2)—Ti(1)—O(12)	91.0 (4)
Stoe Stadi-4 diffracton	12519 observed i	reflections			O(2)—Ti(1)— $O(7)$	87.2 (3)
$2\theta - \omega$ scans	$[I > 2\sigma(I)]$				O(2)—Ti(1)—O(9)	84.5 (4)
Absorption correction:	$R_{\rm int} = 0.0331$				O(12)— $Ti(1)$ — $O(7)$	178.2 (4)
empirical (y) scan of	f 16 $\theta_{\rm max} = 30^{\circ}$				O(12)—Ti(1)—O(9)	88.7 (3)
reflections)	h = 25				O(7)—Ti(1)—O(9)	91.4 (3)
	$n = -23 \rightarrow 25$		Ti(2)O ₆ octahedron			
$T_{\rm min} = 0.0624, T_{\rm max}$	$= k = -8 \rightarrow 8$		Ti(2)—O(4)	1.874 (4)	O(4)—Ti(2)—O(20)	93.7 (4)
0.1626	$l = -20 \rightarrow 20$		Ti(2)—O(20)	1.893 (6)	O(4)—Ti(2)—O(3)	93.0 (4)
11 014 measured reflect	ctions 3 standard reflect	ctions	Ti(2)—O(3)	1.940 (5)	O(4)—Ti(2)—O(5)	173.5 (2)
4114 independent refle	ctions frequency: 50	min	Ti(2)—O(5)	1.966 (4)	O(4)—Ti(2)—O(16)	90.6 (4)
iii independent fene	internet start	11111 1	Ti(2)—O(16)	1.975 (5)	O(4)—Ti(2)—O(15)	88.8 (3)
	intensity varia	anon: 8%	Ti(2)—O(15)	1.976 (5)	O(20)—Ti(2)—O(3)	91.1 (2)
					O(20)—Ti(2)—O(5)	91.8 (4)
Refinement					O(20)—Ti(2)—O(16)	88.0 (2)
Definition F		-41			O(20)—Ti(2)—O(15)	175.1 (3)
Reinfeinent on F	Extinction corre	ction:			O(3) - Ti(2) - O(5)	90.3 (4)
R = 0.0331	Larson (1970))			O(3)— $Ti(2)$ — $O(16)$	176.3 (4)
wR = 0.0344	Extinction coeffi	icient:			O(3) - Ti(2) - O(15)	92.9 (3)
2519 reflections	219 (9)				$O(5) = I_1(2) = O(16)$ $O(5) = T_2(2) = O(15)$	86.2 (4)
273 parameters	Atomic scatterin	a factors			$O(15) = \Pi(2) = O(15)$	85.4 (3)
$(\Lambda/\pi) = 0.006$	from Internet	ig laciols			0(10) - 1(2) - 0(15)	87.8 (3)
$(\Delta/0)_{\text{max}} = 0.000$		ional Tables	$T_1(3)O_6$ octahedron			
$\Delta \rho_{\rm max} = 1.8 / e A$	for X-ray Cry	stallography	Ti(3)O(13)*	1.831 (6)	O(13)—Ti(3)—O(8)	93.6 (3)
$\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm A}^{-3}$	(1974, Vol. IV	/)	$T_{1}^{(3)} = O(8)$	1.894 (9)	O(13)— $Ti(3)$ — $O(11)$	88.2 (2)
			$T_1(3) = O(11)$	1.925 (5)	O(13)— $Ti(3)$ — $O(6)$	89.4 (2)
Table 1. Fractional	atomic coordinates and	d eauivalent	$T_1(3) = O(6)$	1.962 (6)	O(13) - Ti(3) - O(19)	91.4 (3)
isotronia dis	nlagoment nonometers (Å 2	T1(3) = O(19) T2(3) = O(17)	1.979 (9)	O(13) - Ii(3) - O(17)	176.3 (4)
isotropic ais	placement parameters ((A ⁻)	$\Pi(3) = O(17)$	2.015 (5)	$O(8) = I_1(3) = O(11)$	93.2 (4)
	$(1/2)\sum \sum U = * = * = = =$		T:(1) O(12)* T:(2)	152 5 (2)	$O(8) = I_1(3) = O(6)$	90.0 (3)
$U_{eq} =$	$(1/5) \Delta_i \Delta_j U_{ij} a_i a_j \mathbf{a}_i \mathbf{a}_j$		$\Pi(1) = O(13)^{-1} = \Pi(3)$	152.5 (5)	O(8) = I(3) = O(19)	1/5.0 (3)
x	v <i>z</i>	Um			O(0) - I(3) - O(17) O(11) - I(3) - O(6)	90.1 (4)
Rb(1) 0.34558 (5)	0.3685 (2) 0.66927 (9)	0.0178 (5)			O(11) = Ti(3) = O(10)	870(4)
Rb (2) 0.32487 (4)	0.34438 (11) 0.94501 (11)	0.0235(3)			O(11) = Ti(3) = O(17)	010(4)
Rb(3) 0.14933 (5)	0.3655 (2) 0.72335 (9)	0.0192 (5)			O(6) = Ti(3) = O(19)	90.0 (3)
Ti(1) 0.54435 (7)	0.2429 (5) 0.57026 (12)) 0.0054 (7)			O(6) - Ti(3) - O(17)	90.3 (3)

1524

P(1)O ₄ tetrahedron			
$P(1) - O(1)^{\dagger}$	1.471 (9)	O(1)—P(1)—O(16)	116.6 (4)
P(1)—O(16)	1.521 (5)	O(1) - P(1) - O(11)	117.5 (5)
P(1)-O(11)	1.536 (7)	O(1)—P(1)—O(14)	111.4 (3)
P(1) - O(14)	1.613 (5)	O(16)—P(1)—O(11)	106.7 (4)
		O(16)-P(1)-O(14)	103.6 (3)
		O(11)-P(1)-O(14)	98.8 (3)
P(2)O ₄ tetrahedron			
P(2)-O(18)	1.516 (9)	O(18)—P(2)—O(17)	110.7 (5)
P(2) - O(17)	1.522 (5)	O(18)—P(2)—O(3)	112.0 (5)
P(2)-O(3)	1.538 (6)	O(18)—P(2)—O(2)	104.9 (4)
P(2) - O(2)	1.542 (9)	O(17)-P(2)-O(3)	108.0 (3)
		O(17)-P(2)-O(2)	110.1 (5)
		O(3)—P(2)—O(2)	111.1 (5)
P(3)O ₄ tetrahedron			
P(3)O(7)	1.513 (6)	O(7)—P(3)—O(5)	109.6 (5)
P(3)—O(5)	1.533 (4)	O(7)—P(3)—O(4)	109.7 (5)
P(3)O(4)	1.543 (4)	O(7)—P(3)—O(6)	112.9 (2)
P(3)O(6)	1.545 (6)	O(5)-P(3)-O(4)	106.3 (2)
.,		O(5)—P(3)—O(6)	109.8 (5)
		O(4)—P(3)—O(6)	108.3 (5)
P(4)O ₄ tetrahedron	L		
P(4)—O(9)	1.501 (6)	O(9)—P(4)—O(19)	110.4 (5)
P(4)-O(19)	1.531 (9)	O(9)—P(4)—O(20)	111.8 (4)
P(4) - O(20)	1.533 (6)	O(9)—P(4)—O(8)	111.5 (5)
P(4) - O(8)	1.554 (9)	O(19) - P(4) - O(20)	108.9 (5)
• () • ()		O(19)-P(4)-O(8)	103.6 (3)
		O(20)—P(4)—O(8)	110.4 (5)
$P(5)O_4$ tetrahedror	1		
$P(5) - O(10)^{\dagger}$	1,496 (9)	O(10) - P(5) - O(12)	115.1 (7)
P(5) = O(12)	1 521 (7)	O(10) - P(5) - O(15)	116.1 (4)
P(5) = O(15)	1.529 (6)	O(10) - P(5) - O(14)	110.7 (4)
$P(5) = O(14)^{\dagger}$	1 600 (5)	O(12) = P(5) = O(15)	109.1 (4)
1(3)-0(14)4	1.000 (3)	O(12) = P(5) = O(14)	102.2 (3)
P(1)—O(14)‡—P(5)	135.7 (3)	O(12) - P(5) - O(14)	102.0 (3)
Environment around	nd Rb(1) with (CN = 10	
Rb(1)—O(7)	2.763 (6)	Rb(1)—O(11)	3.148 (9)
Rb(1)-O(1)	2.864 (8)	Rb(1)—O(9)	3.238 (8)
Rb(1)O(14)	2.955 (5)	Rb(1)—O(3)	3.238 (8)
Rb(1)O(19)	3.045 (8)	Rb(1)O(17)	3.323 (9)
Rb(1)—O(10)	3.074 (8)	Rb(1)—O(5)	3.361 (13)
Environment around	nd Rb(2) with (CN = 9	
Rb(2)O(10)	2.811 (8)	Rb(2)—O(13)	3.198 (4)
Rb(2)-O(19)	2.932 (8)	Rb(2)—O(2)	3.210 (8)
Rb(2)O(1)	2.935 (7)	Rb(2)—O(11)	3.217 (9)
Rb(2)—O(5)	3.162 (4)	Rb(2)—O(8)	3.398 (8)
Rb(2)—O(15)	3.179 (6)		
Environment arou	nd Rb(3) with (CN = 11	
Rb(3)O(6)	2.784 (6)	Rb(3)—O(5)	3.285 (13)
Rb(3)-O(10)	2.923 (8)	Rb(3)O(17)	3.337 (7)
Rb(3)	2.981 (10)	Rb(3)—O(14)	3.387 (5)
Rb(3)—O(2)	3.013 (8)	Rb(3)O(9)	3.409 (10)
Rb(3)O(1)	3.021 (7)	Rb(3)—O(20)	3.457 (8)
Rb(3)	3.101 (6)		

* Bridging atom between $Ti(1)O_6$ and $Ti(3)O_6$.

† Terminal atom from a PO₄ group (not connected to Ti).

[‡] Bridging atom between two PO₄ groups.

Data collection, cell refinement and data reduction were carried out using Stoe software. Precise cell refinement was performed by double-step-scan technique. The structure was solved using *CRYSTALS* (Watkin, Carruthers & Betteridge, 1985). To avoid the strong correlations between nine pairs of positional (y) and displacement parameters for atoms related by pseudo-symmetry, the parameters within these pairs were refined riding on one another. The Flack enantiopole parameter (Flack, 1983) was refined to 0.94 (1). Weights $w = 1/[\sigma^2(F) + kF^2]$ were used until the last few cycles when robust-resistant weights (Tukey, 1974) were applied (parameters used 9.07, -7.01 and 7.16).

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved I thank Drs Mike Glazer and David Watkin for helpful discussions, Dr Pam Thomas, Warwick University, England, for giving me access to their furnace, and Anthony Fitzmaurice for the Kurtz test run. This work was supported by a grant from the Optoelectronics Research Centre at Southampton University/University College London.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1071). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Stucky, G. D., Phillips, M. L. F. & Gier, T. E. (1989). Chem. Mater. 1, 492-509.
- Thomas, P. A., Glazer, A. M. & Watts, B. E. (1990). Acta Cryst. B46, 333-343.
- Tukey, J. W. (1974). Critical Evaluation of Chemical and Physical Structural Information, pp. 3–14. Washington, DC: National Academy of Sciences.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1985). CRYSTALS Users Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Acta Cryst. (1994). C50, 1525-1527

$RbTi_2(PO_4)_3$

RUMEN DUHLEV[†]

Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, England

(Received 20 September 1993; accepted 27 January 1994)

Abstract

Rubidium titanium monophosphate forms trigonal crystals, isostructural with its lithium, sodium and potassium analogues. The structure consists of a three-dimensional framework of corner-shared TiO₆ octahedra and PO₄ tetrahedra with the Rb atoms alternating along the $\overline{3}$ axis with Ti₂P₃O₁₈ units, composed of two TiO₆ octahedra linked through three PO₄ tetrahedra.

[†] Present address: World Scientific Publishing Co. Ltd, 73 Lynton Mead, Totteridge, London N20 8DH, England.