INORGANIC COMPOUNDS

Acta Cryst. (1994). C50, 1523-1525

$\mathbf{R b}_{3} \mathbf{T i}_{\mathbf{2}}(\mathbf{T i O})\left(\mathbf{P O}_{4}\right)_{3} \mathbf{P}_{2} \mathrm{O}_{7}: \mathbf{a}$ New NonCentrosymmetric Titanyl Phosphate

Rumen Duhlev \dagger
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, England

(Received 20 September 1993; accepted 21 January 1994)

Abstract

Rubidium titanium titanyl monophosphate diphosphate has been synthesized for the first time. The structure consists of corner-shared TiO_{6} and PO_{4} groups with Rb atoms occupying nine-, ten- and eleven-coordinate sites. The TiO_{6} octahedra are highly distorted and two of them are linked through a shared O atom. Two of the PO_{4} groups share an O atom, thus forming a diphosphate group $\mathrm{P}_{2} \mathrm{O}_{7}$, two of the O atoms of which are terminal (i.e. not bonded to a Ti atom). Taking these structural features into account, the chemical formula can be written as $\mathrm{Rb}_{3} \mathrm{Ti}_{2}(\mathrm{TiO})\left(\mathrm{PO}_{4}\right)_{3} \mathrm{P}_{2} \mathrm{O}_{7}$.

Comment

Potassium titanyl phosphate $\left(\mathrm{KTiOPO}_{4}\right)$ has been of interest in the past decade because of its unique combination of non-linear optical and electro-optical properties (Stucky, Phillips \& Gier, 1989). These properties depend on the lack of an inversion centre in the structure and strong deformation of the TiO_{6} octahedra, shown by the presence of a very short $\mathrm{Ti}-\mathrm{O}$ bond. The title compound is a result of our attempt to produce new noncentrosymmetric titanyl phosphates with strongly distorted TiO_{6} octahedra.
$\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{P}_{5} \mathrm{O}_{20}$ was one of two crystal phases obtained at high temperature from $\mathrm{Rb}_{2} \mathrm{CO}_{3}, \mathrm{TiO}_{2}$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ in the molar ratio $2.25: 1: 3.3$. They were mixed in a platinum crucible and heated to 1373 K , kept at that temperature for 10 h , then cooled slowly $\left(5^{\circ} \mathrm{h}^{-1}\right)$ to 923 K and removed from the furnace. The resulting crystals were recovered from the solidified flux by dissolving it in boiling water. The powder pattern showed that the crystals were a mixture of $\mathrm{RbTi}_{2}\left(\mathrm{PO}_{4}\right)_{3}$ and a phase that was not in the powder pattern database (ICDD). During the course of X-ray analysis, this phase was identified as $\mathrm{Rb}_{3} \mathrm{Ti}_{3} \mathrm{P}_{5} \mathrm{O}_{20}$, a new compound which has not been reported before.

[^0]The bond lengths and angles (Table 2) are within the expected range. The structure consists of a three-dimensional framework of corner-shared TiO_{6} octahedra and PO_{4} tetrahedra with Rb atoms located on the cage sites within the framework (Fig. 1). The six O atoms around any of the three crystallographically distinct Ti atoms form a distorted octahedron. The distortion is larger for the environments of $\mathrm{Ti}(1)$ and $\mathrm{Ti}(3)$, which form a titanyl bridge via $\mathrm{O}(13)$, and this results in the formation of one very short [1.780 (6) and 1.831 (6) \AA, respectively] and one very long [2.036 (6) and 2.015 (5) \AA, respectively] $\mathrm{Ti}-\mathrm{O}$ bond, causing a maximum difference between the $\mathrm{Ti}-\mathrm{O}$ bond lengths in $\mathrm{Ti}(1) \mathrm{O}_{6}$ and $\mathrm{Ti}(3) \mathrm{O}_{6}$ of 0.26 and $0.18 \AA$, respectively. In terms of bond strengths (Brown \& Altermatt, 1985), this means that the short bond is twice as strong as the long one [1.10 versus $0.55 \mathrm{v} . \mathrm{u}$. in $\mathrm{Ti}(1) \mathrm{O}_{6}$]. There are five crystallographically distinct P atoms, two of which $[\mathrm{P}(1)$ and $\mathrm{P}(5)$] are linked via $\mathrm{O}(14)$. The formation of the diphosphate group is achieved at the expense of a strong distortion (in both angles and bond lengths) of the $\mathrm{P}(1) \mathrm{O}_{4}$ and $\mathrm{P}(5) \mathrm{O}_{4}$ tetrahedra [very long $\mathrm{P}-\mathrm{O}$ bonds to the bridging atom $O(14)$], and one of the four bonding O atoms becoming terminal. The $\mathrm{P}(1)-\mathrm{O}(14)-\mathrm{P}(5)$ bridge forms an angle of 135.7 (3) ${ }^{\circ}$ and the $\mathrm{P}-\mathrm{O}$ bond lengths are $1.471(9)-1.496(9) \AA$ (terminal), $1.501(6)-1.554(9) \AA$ (O also bonded to Ti) and $1.600(5)-1.613(5) \AA$ (bridging). Considering the diphosphate and titanyl bridging in the structure, the chemical formula can be written as $\mathrm{Rb}_{3} \mathrm{Ti}_{2}(\mathrm{TiO})\left(\mathrm{PO}_{4}\right)_{3} \mathrm{P}_{2} \mathrm{O}_{7}$. The three crystallographically distinct Rb atoms are bonded to nine, ten

Fig. 1. TiO_{6} octahedra, PO_{4} tetrahedra and Rb atoms (spheres) in the structure of $\mathrm{Rb}_{3} \mathrm{Ti}_{2}(\mathrm{TiO})\left(\mathrm{PO}_{4}\right)_{3} \mathrm{P}_{2} \mathrm{O}_{7}$. The darker shading represents those polyhedra and spheres that are centred around $y=0.14-0.37$, while the lighter shading is for $y=0.63-0.86$.
and eleven O atoms, respectively, with $\mathrm{Rb}-\mathrm{O}$ bond lengths between 2.763 (6) and 3.457 (8) \AA. Bondvalence analysis shows consistency between bond-valence balance and the oxidation state of each atom, apart from the higher bond-strength sum around the Ti and a few O atoms.

The lack of a centre of symmetry as well as the strongly distorted TiO_{6} octahedra, though to a lesser extent than in KTiOPO_{4} (Thomas, Glazer \& Watts, 1990), suggested that this compound may show significant second-harmonic generation (SHG) response. Our measurements based on the Kurtz test on a powder sample (Kurtz \& Perry, 1968), however, showed an SHG signal which was lower than that of $\mathrm{KDP}\left(\mathrm{KH}_{2} \mathrm{PO}_{4}\right)$.

Experimental

Crystal data
$\mathrm{Rb}_{3} \mathrm{Ti}_{2}(\mathrm{TiO})\left(\mathrm{PO}_{4}\right)_{3} \mathrm{P}_{2} \mathrm{O}_{7}$
$M_{r}=874.90$
Orthorhombic
Pca2 ${ }_{1}$
$a=18.281$ (2) \AA
$b=6.2932$ (7) \AA
$c=14.773$
(2) \AA
$V=1699.6$
(6) \AA^{3}
$Z=4$
$D_{x}=3.42 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe Stadi-4 diffractometer

$2 \theta-\omega$ scans

Absorption correction: empirical (ψ scan of 16 reflections)
$T_{\text {min }}=0.0624, \quad T_{\text {max }}=$ 0.1626

11014 measured reflections
4114 independent reflections
Mo $K \alpha$ radiation $\lambda=0.71073 \AA$
Cell parameters from 36 reflections
$\theta=17-22^{\circ}$
$\mu=11.03 \mathrm{~mm}^{-1}$
Room temperature
$0.34 \times 0.27 \times 0.23 \mathrm{~mm}$ Colourless

2519 observed reflections

$$
[I>2 \sigma(I)]
$$

$R_{\text {int }}=0.0331$
$\theta_{\text {max }}=30^{\circ}$
$h=-25 \rightarrow 25$
$k=-8 \rightarrow 8$
$l=-20 \rightarrow 20$
3 standard reflections frequency: 50 min intensity variation: 8%

Refinement

Refinement on F
$R=0.0331$
$w R=0.0344$
2519 reflections
273 parameters
$(\Delta / \sigma)_{\text {max }}=0.006$
$\Delta \rho_{\text {max }}=1.87 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.53 \mathrm{e}^{-3}$
Extinction correction: Larson (1970)
Extinction coefficient: 219 (9)
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i}, \mathrm{a}_{j}$.				
	\boldsymbol{x}	y	z	$U_{\text {eq }}$
Rb (1)	0.34558 (5)	0.3685 (2)	0.66927 (9)	0.0178 (5)
$\mathrm{Rb}(2)$	0.32487 (4)	0.34438 (11)	0.94501 (11)	0.0235 (3)
$\mathrm{Rb}(3)$	0.14933 (5)	0.3655 (2)	0.72335 (9)	0.0192 (5)
Ti(1)	0.54435 (7)	0.2429 (5)	0.57026 (12)	0.0054 (7)
$\mathrm{Ti}(2)$	0.35265 (5)	0.74730 (16)	0.44253 (14)	0.0057 (4)

$\mathrm{Ti}(3)$	$0.44904(8)$	$0.7573(5)$	$0.83300(13)$	$0.0061(7)$
$\mathrm{P}(1)$	$0.27349(12)$	$-0.1449(5)$	$0.78672(15)$	$0.0067(10)$
$\mathrm{P}(2)$	$0.49021(11)$	$0.7445(6)$	$0.59928(14)$	$0.0055(9)$
$\mathrm{P}(3)$	$0.39710(7)$	$0.2444(2)$	$0.44614(18)$	$0.0058(5)$
$\mathrm{P}(4)$	$0.49817(10)$	$0.2540(6)$	$0.80260(14)$	$0.0061(9)$
$\mathrm{P}(5)$	$0.22276(12)$	$-0.1450(5)$	$0.59526(16)$	$0.0072(10)$
$\mathrm{O}(1)$	$0.2723(3)$	$0.0884(15)$	$0.7922(4)$	$0.011(3)$
$\mathrm{O}(2)$	$0.5393(4)$	$0.5532(15)$	$0.5756(6)$	$0.011(3)$
$\mathrm{O}(3)$	$0.4181(3)$	$0.7376(17)$	$0.5458(3)$	$0.010(2)$
$\mathrm{O}(4)$	$0.3482(2)$	$0.0448(6)$	$0.4434(9)$	$0.010(2)$
$\mathrm{O}(5)$	$0.3452(2)$	$0.4357(6)$	$0.4436(9)$	$0.010(2)$
$\mathrm{O}(6)$	$0.5540(3)$	$0.7557(5)$	$0.8609(4)$	$0.009(3)$
$\mathrm{O}(7)$	$0.4406(3)$	$0.2476(5)$	$0.5332(4)$	$0.010(3)$
$\mathrm{O}(8)$	$0.4506(4)$	$0.0579(14)$	$0.8274(5)$	$0.008(3)$
$\mathrm{O}(9)$	$0.5163(4)$	$0.2577(18)$	$0.7035(4)$	$0.015(3)$
$\mathrm{O}(10)$	$0.2221(4)$	$0.0925(14)$	$0.5910(5)$	$0.014(3)$
$\mathrm{O}(11)$	$0.3454(3)$	$0.7425(16)$	$0.8108(4)$	$0.010(3)$
$\mathrm{O}(12)$	$0.6481(3)$	$0.2482(18)$	$0.6067(4)$	$0.014(3)$
$\mathrm{O}(13)$	$0.4290(2)$	$0.7520(7)$	$0.9544(4)$	$0.009(2)$
$\mathrm{O}(14)$	$0.2653(3)$	$-0.2253(7)$	$0.6835(3)$	$0.012(3)$
$\mathrm{O}(15)$	$0.2643(3)$	$0.7414(10)$	$0.5195(3)$	$0.012(2)$
$\mathrm{O}(16)$	$0.2872(3)$	$0.7375(10)$	$0.3363(4)$	$0.011(2)$
$\mathrm{O}(17)$	$0.4716(4)$	$0.7423(18)$	$0.6997(3)$	$0.014(3)$
$\mathrm{O}(18)$	$0.5357(4)$	$0.9382(15)$	$0.5757(6)$	$0.013(3)$
$\mathrm{O}(19)$	$0.4494(4)$	$0.4432(14)$	$0.8273(6)$	$0.009(3)$
$\mathrm{O}(20)$	$0.4328(3)$	$0.7394(16)$	$0.3614(4)$	$0.013(3)$

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$
$\mathrm{Ti}(1) \mathrm{O}_{6}$ octahedron

$\mathrm{Ti}(1)-\mathrm{O}(13)^{*}$	$1.780(6)$
$\mathrm{Ti}(1)-\mathrm{O}(18)$	$1.926(10)$
$\mathrm{Ti}(1)-\mathrm{O}(2)$	$1.957(10)$
$\mathrm{Ti}(1)-\mathrm{O}(12)$	$1.971(6)$
$\mathrm{Ti}(1)-\mathrm{O}(7)$	$1.974(6)$
$\mathrm{Ti}(1)-\mathrm{O}(9)$	$2.036(6)$

$\mathrm{O}(13)-\mathrm{Ti}(1)-\mathrm{O}(18)$	$94.6(3)$
$\mathrm{O}(13)-\mathrm{Ti}(1)-\mathrm{O}(2)$	$91.9(3)$
$\mathrm{O}(13)-\mathrm{Ti}(1)-\mathrm{O}(12)$	$89.9(2)$
$\mathrm{O}(13)-\mathrm{Ti}(1)-\mathrm{O}(7)$	$89.8(2)$
$\mathrm{O}(13)-\mathrm{Ti}(1)-\mathrm{O}(9)$	$176.1(4)$
$\mathrm{O}(18)-\mathrm{Ti}(1)-\mathrm{O}(2)$	$171.2(3)$
$\mathrm{O}(18)-\mathrm{Ti}(1)-\mathrm{O}(12)$	$94.8(4)$
$\mathrm{O}(18)-\mathrm{Ti}(1)-\mathrm{O}(7)$	$87.0(3)$
$\mathrm{O}(18)-\mathrm{Ti}(1)-\mathrm{O}(9)$	$89.1(4)$
$\mathrm{O}(2)-\mathrm{Ti}(1)-\mathrm{O}(12)$	$91.0(4)$
$\mathrm{O}(2)-\mathrm{Ti}(1)-\mathrm{O}(7)$	$87.2(3)$
$\mathrm{O}(2)-\mathrm{Ti}(1)-\mathrm{O}(9)$	$84.5(4)$
$\mathrm{O}(12)-\mathrm{Ti}(1)-\mathrm{O}(7)$	$178.2(4)$
$\mathrm{O}(12)-\mathrm{Ti}(1)-\mathrm{O}(9)$	$88.7(3)$
$\mathrm{O}(7)-\mathrm{Ti}(1)-\mathrm{O}(9)$	$91.4(3)$

$\mathrm{Ti}(2) \mathrm{O}_{6}$ octahedron	
$\mathrm{Ti}(2)-\mathrm{O}(4)$	$1.874(4)$
$\mathrm{Ti}(2)-\mathrm{O}(20)$	$1.893(6)$
$\mathrm{Ti}(2)-\mathrm{O}(3)$	$1.940(5)$
$\mathrm{Ti}(2)-\mathrm{O}(5)$	$1.966(4)$
$\mathrm{Ti}(2)-\mathrm{O}(16)$	$1.975(5)$
$\mathrm{Ti}(2)-\mathrm{O}(15)$	$1.976(5)$

$\mathrm{O}(4)-\mathrm{Ti}(2)-\mathrm{O}(20)$	$93.7(4)$
$\mathrm{O}(4)-\mathrm{Ti}(2)-\mathrm{O}(3)$	$93.0(4)$
$\mathrm{O}(4)-\mathrm{Ti}(2)-\mathrm{O}(5)$	$173.5(2)$
$\mathrm{O}(4)-\mathrm{Ti}(2)-\mathrm{O}(16)$	$90.6(4)$
$\mathrm{O}(4)-\mathrm{Ti}(2)-\mathrm{O}(15)$	$88.8(3)$
$\mathrm{O}(20)-\mathrm{Ti}(2)-\mathrm{O}(3)$	$91.1(2)$
$\mathrm{O}(20)-\mathrm{Ti}(2)-\mathrm{O}(5)$	$91.8(4)$
$\mathrm{O}(20-\mathrm{Ti}(2)-\mathrm{O}(16)$	$88.0(2)$
$\mathrm{O}(20-\mathrm{Ti}(2)-\mathrm{O}(15)$	$175.1(3)$
$\mathrm{O}(3)-\mathrm{Ti}(2)-\mathrm{O}(5)$	$90.3(4)$
$\mathrm{O}(3)-\mathrm{Ti}(2)-\mathrm{O}(16)$	$176.3(4)$
$\mathrm{O}(3)-\mathrm{Ti}(2)-\mathrm{O}(15)$	$92.9(3)$
$\mathrm{O}(5)-\mathrm{Ti}(2)-\mathrm{O}(16)$	$86.2(4)$
$\mathrm{O}(5)-\mathrm{Ti}(2)-\mathrm{O}(15)$	$85.4(3)$
$\mathrm{O}(16)-\mathrm{Ti}(2)-\mathrm{O}(15)$	$87.8(3)$
$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(8)$	$93.6(3)$
$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(11)$	$88.2(2)$
$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(6)$	$89.4(2)$
$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(19)$	$91.4(3)$
$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$176.3(4)$
$\mathrm{O}(8)-\mathrm{Ti}(3)-\mathrm{O}(11)$	$93.2(4)$
$\mathrm{O}(8)-\mathrm{Ti}(3)-\mathrm{O}(6)$	$90.0(3)$
$\mathrm{O}(8)-\mathrm{Ti}(3)-\mathrm{O}(19)$	$175.0(3)$
$\mathrm{O}(8)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$90.1(4)$
$\mathrm{O}(11)-\mathrm{Ti}(3)-\mathrm{O}(6)$	$176.2(3)$
$\mathrm{O}(11)-\mathrm{Ti}(3)-\mathrm{O}(19)$	$87.0(4)$
$\mathrm{O}(11)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$91.9(3)$
$\mathrm{O}(6)-\mathrm{Ti}(3)-\mathrm{O}(19)$	$90.0(3)$
$\mathrm{O}(6)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$90.3(3)$
$\mathrm{O}(19)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$84.9(4)$

$\mathrm{Ti}(3) \mathrm{O}_{6}$ octahedron			
$\mathrm{Ti}(3)-\mathrm{O}(13)^{*}$	$1.831(6)$	$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(8)$	$93.6(3)$
$\mathrm{Ti}(3)-\mathrm{O}(8)$	$1.894(9)$	$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(11)$	$88.2(2)$
$\mathrm{Ti}(3)-\mathrm{O}(11)$	$1.925(5)$	$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(6)$	$89.4(2)$
$\mathrm{Ti}(3)-\mathrm{O}(6)$	$1.962(6)$	$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(19)$	$91.4(3)$
$\mathrm{Ti}(3)-\mathrm{O}(19)$	$1.979(9)$	$\mathrm{O}(13)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$176.3(4)$
$\mathrm{Ti}(3)-\mathrm{O}(17)$	$2.015(5)$	$\mathrm{O}(8)-\mathrm{Ti}(3)-\mathrm{O}(11)$	$93.2(4)$
		$\mathrm{O}(8)-\mathrm{Ti}(3)-\mathrm{O}(6)$	$90.0(3)$
$\mathrm{Ti}(1)-\mathrm{O}(13)^{*}-\mathrm{Ti}(3)$	$152.5(3)$	$\mathrm{O}(8)-\mathrm{Ti}(3)-\mathrm{O}(19)$	$175.0(3)$
		$\mathrm{O}(8)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$90.1(4)$
		$\mathrm{O}(11)-\mathrm{Ti}(3)-\mathrm{O}(6)$	$176.2(3)$
		$\mathrm{O}(11)-\mathrm{Ti}(3)-\mathrm{O}(19)$	$87.0(4)$
		$\mathrm{O}(11)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$91.9(3)$
		$\mathrm{O}(6)-\mathrm{Ti}(3)-\mathrm{O}(19)$	$90.0(3)$
		$\mathrm{O}(6)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$90.3(3)$
		$\mathrm{O}(19)-\mathrm{Ti}(3)-\mathrm{O}(17)$	$84.9(4)$

$\mathrm{P}(1) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(1)-\mathrm{O}(1) \dagger$	1.471 (9)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(16)$	116.6 (4)
$\mathrm{P}(1)-\mathrm{O}(16)$	1.521 (5)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(11)$	117.5 (5)
$\mathrm{P}(1)-\mathrm{O}(11)$	1.536 (7)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(14)$	111.4 (3)
$\mathrm{P}(1)-\mathrm{O}(14) \ddagger$	1.613 (5)	$\mathrm{O}(16)-\mathrm{P}(1)-\mathrm{O}(11)$	106.7 (4)
		$\mathrm{O}(16)-\mathrm{P}(1)-\mathrm{O}(14)$	103.6 (3)
		$\mathrm{O}(11)-\mathrm{P}(1)-\mathrm{O}(14)$	98.8 (3)
$\mathrm{P}(2) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(2)-\mathrm{O}(18)$	1.516 (9)	$\mathrm{O}(18)-\mathrm{P}(2)-\mathrm{O}(17)$	110.7 (5)
$\mathrm{P}(2)-\mathrm{O}(17)$	1.522 (5)	$\mathrm{O}(18)-\mathrm{P}(2)-\mathrm{O}(3)$	112.0 (5)
$\mathrm{P}(2)-\mathrm{O}(3)$	1.538 (6)	$\mathrm{O}(18)-\mathrm{P}(2)-\mathrm{O}(2)$	104.9 (4)
$\mathrm{P}(2)-\mathrm{O}(2)$	1.542 (9)	$\mathrm{O}(17)-\mathrm{P}(2)-\mathrm{O}(3)$	108.0 (3)
		$\mathrm{O}(17)-\mathrm{P}(2)-\mathrm{O}(2)$	110.1 (5)
		$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(2)$	111.1 (5)
$\mathrm{P}(3) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(3)-\mathrm{O}(7)$	1.513 (6)	$\mathrm{O}(7)-\mathrm{P}(3)-\mathrm{O}(5)$	109.6 (5)
$\mathrm{P}(3)-\mathrm{O}(5)$	1.533 (4)	$\mathrm{O}(7)-\mathrm{P}(3)-\mathrm{O}(4)$	109.7 (5)
$\mathrm{P}(3)-\mathrm{O}(4)$	1.543 (4)	$\mathrm{O}(7)-\mathrm{P}(3)-\mathrm{O}(6)$	112.9 (2)
$\mathrm{P}(3)-\mathrm{O}(6)$	1.545 (6)	$\mathrm{O}(5)-\mathrm{P}(3)-\mathrm{O}(4)$	106.3 (2)
		$\mathrm{O}(5)-\mathrm{P}(3)-\mathrm{O}(6)$	109.8 (5)
		$\mathrm{O}(4)-\mathrm{P}(3)-\mathrm{O}(6)$	108.3 (5)
$\mathrm{P}(4) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(4)-\mathrm{O}(9)$	1.501 (6)	$\mathrm{O}(9)-\mathrm{P}(4)-\mathrm{O}(19)$	110.4 (5)
$\mathrm{P}(4)-\mathrm{O}(19)$	1.531 (9)	$\mathrm{O}(9)-\mathrm{P}(4)-\mathrm{O}(20)$	111.8 (4)
$\mathrm{P}(4)-\mathrm{O}(20)$	1.533 (6)	$\mathrm{O}(9)-\mathrm{P}(4)-\mathrm{O}(8)$	111.5 (5)
$\mathrm{P}(4)-\mathrm{O}(8)$	1.554 (9)	$\mathrm{O}(19)-\mathrm{P}(4)-\mathrm{O}(20)$	108.9 (5)
		$\mathrm{O}(19)-\mathrm{P}(4)-\mathrm{O}(8)$	103.6 (3)
		$\mathrm{O}(20)-\mathrm{P}(4)-\mathrm{O}(8)$	110.4 (5)
$\mathrm{P}(5) \mathrm{O}_{4}$ tetrahedron			
$\mathrm{P}(5)-\mathrm{O}(10) \dagger$	1.496 (9)	$\mathrm{O}(10)-\mathrm{P}(5)-\mathrm{O}(12)$	115.1 (7)
$\mathrm{P}(5)-\mathrm{O}(12)$	1.521 (7)	$\mathrm{O}(10)-\mathrm{P}(5)-\mathrm{O}(15)$	116.1 (4)
$\mathrm{P}(5)-\mathrm{O}(15)$	1.529 (6)	$\mathrm{O}(10)-\mathrm{P}(5)-\mathrm{O}(14)$	110.7 (4)
$\mathrm{P}(5)-\mathrm{O}(14) \ddagger$	1.600 (5)	$\mathrm{O}(12)-\mathrm{P}(5)-\mathrm{O}(15)$	109.1 (4)
		$\mathrm{O}(12)-\mathrm{P}(5)-\mathrm{O}(14)$	102.2 (3)
$\mathrm{P}(1)-\mathrm{O}(14) \ddagger-\mathrm{P}(5)$	135.7 (3)	$\mathrm{O}(15)-\mathrm{P}(5)-\mathrm{O}(14)$	102.0 (3)
Environment around $\mathrm{Rb}(1)$ with $\mathrm{CN}=10$			
$\mathrm{Rb}(1)-\mathrm{O}(7)$	2.763 (6)	$\mathrm{Rb}(1)-\mathrm{O}(11)$	3.148 (9)
$\mathrm{Rb}(1)-\mathrm{O}(1)$	2.864 (8)	$\mathrm{Rb}(1)-\mathrm{O}(9)$	3.238 (8)
$\mathrm{Rb}(1)-\mathrm{O}(14)$	2.955 (5)	$\mathrm{Rb}(1)-\mathrm{O}(3)$	3.238 (8)
$\mathrm{Rb}(1)-\mathrm{O}(19)$	3.045 (8)	$\mathrm{Rb}(1)-\mathrm{O}(17)$	3.323 (9)
$\mathrm{Rb}(1)-\mathrm{O}(10)$	3.074 (8)	$\mathrm{Rb}(1)-\mathrm{O}(5)$	3.361 (13)
Environment around $\mathrm{Rb}(2)$ with $\mathrm{CN}=9$			
$\mathrm{Rb}(2)-\mathrm{O}(10)$	2.811 (8)	$\mathrm{Rb}(2)-\mathrm{O}(13)$	3.198 (4)
$\mathrm{Rb}(2)-\mathrm{O}(19)$	2.932 (8)	$\mathrm{Rb}(2)-\mathrm{O}(2)$	3.210 (8)
$\mathrm{Rb}(2)-\mathrm{O}(1)$	2.935 (7)	$\mathrm{Rb}(2)-\mathrm{O}(11)$	3.217 (9)
$\mathrm{Rb}(2)-\mathrm{O}(5)$	3.162 (4)	$\mathrm{Rb}(2)-\mathrm{O}(8)$	3.398 (8)
$\mathrm{Rb}(2)-\mathrm{O}(15)$	3.179 (6)		
Environment around $\mathrm{Rb}(3)$ with $\mathrm{CN}=11$			
$\mathrm{Rb}(3)-\mathrm{O}(6)$	2.784 (6)	$\mathrm{Rb}(3)-\mathrm{O}(5)$	3.285 (13)
$\mathrm{Rb}(3)-\mathrm{O}(10)$	2.923 (8)	$\mathrm{Rb}(3)-\mathrm{O}(17)$	3.337 (7)
$\mathrm{Rb}(3)-\mathrm{O}(12)$	2.981 (10)	$\mathrm{Rb}(3)-\mathrm{O}(14)$	3.387 (5)
$\mathrm{Rb}(3)-\mathrm{O}(2)$	3.013 (8)	$\mathrm{Rb}(3)-\mathrm{O}(9)$	3.409 (10)
$\mathrm{Rb}(3)-\mathrm{O}(1)$	3.021 (7)	$\mathrm{Rb}(3)-\mathrm{O}(20)$	3.457 (8)
$\mathrm{Rb}(3)-\mathrm{O}(16)$	3.101 (6)		

[^1]Data collection, cell refinement and data reduction were carried out using Stoe software. Precise cell refinement was performed by double-step-scan technique. The structure was solved using CRYSTALS (Watkin, Carruthers \& Betteridge, 1985). To avoid the strong correlations between nine pairs of positional (y) and displacement parameters for atoms related by pseudo-symmetry, the parameters within these pairs were refined riding on one another. The Flack enantiopole parameter (Flack, 1983) was refined to $0.94(1)$. Weights $w=1 /\left[\sigma^{2}(F)+\right.$ $k F^{2}$] were used until the last few cycles when robust-resistant weights (Tukey, 1974) were applied (parameters used 9.07, -7.01 and 7.16).
© 1994 International Union of Crystallography
Printed in Great Britain - all rights reserved

I thank Drs Mike Glazer and David Watkin for helpful discussions, Dr Pam Thomas, Warwick University, England, for giving me access to their furnace, and Anthony Fitzmaurice for the Kurtz test run. This work was supported by a grant from the Optoelectronics Research Centre at Southampton University/University College London.

Lists of structure factors and anisotropic displacement parameters have been deposited with the IUCr (Reference: DU1071). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kurtz, S. K. \& Perry, T. T. (1968). J. Appl. Phys. 39, 3798-3813.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
Stucky, G. D., Phillips, M. L. F. \& Gier, T. E. (1989). Chem. Mater. 1, 492-509.
Thomas, P. A., Glazer, A. M. \& Watts, B. E. (1990). Acta Cryst. B46, 333-343.
Tukey, J. W. (1974). Critical Evaluation of Chemical and Physical Strucutral Information, pp. 3-14. Washington, DC: National Academy of Sciences.
Watkin, D. J., Carruthers, J. R. \& Betteridge, P. W. (1985). CRYSTALS Users Guide. Chemical Crystallography Laboratory, Univ. of Oxford, England.

Acta Cryst. (1994). C50, 1525-1527
$\mathbf{R b T i}_{\mathbf{2}}\left(\mathbf{P O}_{\mathbf{4}}\right)_{\mathbf{3}}$

Rumen Duhlev \dagger
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, England

(Received 20 September 1993; accepted 27 January 1994)

Abstract

Rubidium titanium monophosphate forms trigonal crystals, isostructural with its lithium, sodium and potassium analogues. The structure consists of a three-dimensional framework of corner-shared TiO_{6} octahedra and PO_{4} tetrahedra with the Rb atoms alternating along the $\overline{3}$ axis with $\mathrm{Ti}_{2} \mathrm{P}_{3} \mathrm{O}_{18}$ units, composed of two TiO_{6} octahedra linked through three PO_{4} tetrahedra. \dagger Present address: World Scientific Publishing Co. Ltd, 73 Lynton Mead, Totteridge, London N20 8DH, England.

[^0]: \dagger Present address: World Scientific Publishing Co. Ltd, 73 Lynton Mead, Totteridge, London N20 8DH, England.

[^1]: * Bridging atom between $\mathrm{Ti}(1) \mathrm{O}_{6}$ and $\mathrm{Ti}(3) \mathrm{O}_{6}$.
 \dagger Terminal atom from a PO_{4} group (not connected to Ti).
 \ddagger Bridging atom between two PO_{4} groups.

